Synthesis and structure of a novel microporous framework stannosilicate

Z. Lin,^a J. Rocha,^{*a} J. D. Pedrosa de Jesus^a and A. Ferreira^b

^aDepartment of Chemistry, University of Aveiro, 3810 Aveiro, Portugal ^bESTGA, University of Aveiro, 3810 Aveiro, Portugal

Received 6th January 2000, Accepted 6th April 2000 Published on the Web 11th May 2000

The second example of a microporous framework stannosilicate with a known structure (AV-7) has been reported. The structure of AV-7, which is very similar to the structure of both the zirconosilicate mineral kostylevite and the previously reported microporous titanosilicate UND-1, has been studied by the Rietveld method and further characterised by bulk chemical analysis, powder X-ray diffraction, scanning electron microscopy, ²³Na, ²⁹Si and ¹¹⁹Sn magic-angle spinning NMR spectroscopy and thermogravimetry.

Introduction

Recently, the synthesis of inorganic microporous framework solids possessing structures which consist of interconnected octahedral- and tetrahedral-oxide polyhedra has stimulated considerable interest. We have been particularly concerned with the chemistry of microporous titanium and zirconium silicates containing tetracoordinated Si^{4+} and Ti^{4+} or Zr^{4+} , usually in octahedral coordination.¹⁻⁴ We have now extended our work to stannosilicates.

Several minerals containing SnO_6 and SiO_4 polyhedra are known and a few (dense) stannosilicate phases have been crystallised from hydrothermal conditions (ref. 5 and references therein). Despite this, very little work is presently available on the synthesis of microporous stannosilicates. Two microporous and a layered stannosilicate have been reported by Corcoran *et al.*⁵ Subsequently, Dyer and Jáfar reported the synthesis of a third microporous stannosilicate.⁶ The structure of all these materials is, however, unknown. The ion-exchange properties of the Dyer and Jáfar stannosilicate have been studied for the replacement of Na⁺ by a range of monovalent and divalent ions.⁷ Thermodynamic parameters have been calculated from isotherm data leading to the conclusion that the exchanges were of zeolite-type character and that the stannosilicate behaves as a microporous solid.

Very recently, we reported the synthesis and structural characterisation of the microporous stannosilicate AV-6 which possesses the structure of mineral umbite.⁸ Here, we report the synthesis of a novel stannosilicate (named AV-7, Aveiro microporous solid no.7) which possesses the structure of both the zirconosilicate mineral kostylevite⁹ and the previously reported titanosilicate known as UND-1.¹⁰

Experimental

AV-7 synthesis

An alkaline solution was made by dissolving sodium metasilicate (12.27 g) (Na₂SiO₃·5H₂O, BDH) and KF (2.45 g) (Aldrich) in H₂O (12.14 g). SnCl₄·5H₂O (3.76 g) (98 m/m%, Riedel-deHaën) was added to the alkaline solution with thorough stirring. This gel, with a molar composition 5.5 Na₂O : 2.0 K₂O : 5.5 SiO₂ : 1.0 SnO₂ : 97 H₂O, was transferred to a Teflon-lined autoclave and treated at 230 °C for 5 days under autogenous pressure without agitation. The crystalline product was filtered off, washed at room temperature with distilled water, and dried at 70 °C overnight, the final product

DOI: 10.1039/b000102n

being an off-white microcrystalline powder. Within experimental error, bulk chemical analysis by ICP suggests for AV-7 the chemical formula $Na_{0.5}K_{1.5}SnSi_3O_9 \cdot H_2O$.

Materials characterisation

Powder X-ray diffraction (XRD) data were collected on a Philipps X'pert MPD diffractometer using Cu-Ka radiation. Rietveld refinement was performed using the program FULL-PROF.¹¹ Table 1 gives the crystallographic data for AV-7. Scanning electron microscope (SEM) images were recorded on a Hitachi S-4100 microscope. 23Na, 29Si and 119Sn NMR spectra were recorded at 105.85, 79.49 and 149.09 MHz, respectively, on a (9.4 T) Bruker MSL 400 P spectrometer. ²⁹Si MAS NMR spectra were recorded with 40° pulses, a spinning rate of 5.0 kHz and 60 s recycle delays. Chemical shifts are quoted in ppm from TMS. ²³Na MAS NMR spectra were measured using short and powerful radiofrequency pulses (0.6 $\mu s,$ equivalent to a 15° pulse angle), a spinning rate of 32 kHz and a recycle delay of 2 s. Chemical shifts are quoted in ppm from 1 M aqueous NaCl. ¹¹⁹Sn MAS NMR spectra were recorded with a 40° pulse, a spinning rate of 14 kHz and a recycle delay of 100 s. Chemical shifts are quoted in ppm from Sn(CH₃)₄. Thermogravimetric (TGA) curves were measured with a TGA-50 analyser. The samples were heated under air at a rate of $5 \,^{\circ}$ C min⁻¹.

Results and discussion

SEM (Fig. 1) shows that AV-7 consists of crystals of *ca*. $1.5 \times 1.5 \times 4.5 \mu$ m. The total AV-7 mass loss (ascertained by

Fig. 1 SEM image of AV-7.

J. Mater. Chem., 2000, **10**, 1353–1356 **1353**

This journal is (C) The Royal Society of Chemistry 2000

Data collection Diffractometer, geometry Radiation 20 range Step scan Time per step	Philipps MPD, Bragg-Brentano Cu-Kα 9–150° 0.02° (2θ) 7 s
Results of Rietveld refinement in $P2_1/c$ space group by the FULLPROF program Cell parameters	a = 6.4655(1) Å b = 11.5450(2) Å c = 12.9333(2) Å $a = 105.0401(8)^{\circ}$
Volume Z Independent reflections/parameters Peak shape function Zeropoint Halfwidth parameters (U, V, W, X, Y) Asymmetry parameters Transparency correction Background polynomial parameters	$\beta = 105.0401(8)^{\circ}$ 932.34(3) Å ³ 4 1931/71 Pseudo-Voigt (NPROF = 7) -0.040(1) 0.024(1), -0.026(1), 0.0206(3), 0.0001, 0.0555(8) -0.25(4), 0.08(1), 0.60(8), -0.08(3) 0.021(2) 185(2), -80(6), 64(10), 552(31), 387(15), -822(35)
Reliability factors (conventional: background excluded) For points with Bragg contribution	$R_{\rm p} = 6.31$ $R_{\rm wp} = 8.60$ $R_{\rm exp} = 3.91$
Structure reliability factors	$\chi^2 = 4.85$ $R_{\rm B} = 3.15$ $R_{\rm F} = 1.95$

TGA) between 30 and 450 $^{\circ}$ C is *ca.* 4%. This water loss is reversible. Powder XRD shows that the framework of AV-7 is stable up to 450 $^{\circ}$ C.

The powder XRD pattern of AV-7 could be indexed with DICVOL¹² using a monoclinic unit cell with a = 6.4596, b = 11.5523, c = 12.9379 Å, $\beta = 104.990^{\circ}$. Atomic coordinates (space group $P2_1/c$) were derived from those reported for UND-1.¹⁰ The final profile fit is shown in Fig. 2, the atomic coordinates are given in Table 2, and bond distances and bond angles are collected on Tables 3 and 4, respectively.

The structure of AV-7 (Fig. 3) is very similar to the structures of the mineral kostylevite and titanosilicate UND- 1^{10} and consists of six-membered rings formed by SiO₄ tetrahedra and

isolated SnO₆ octahedra. In order to coordinate the latter, the six-membered rings are tilted with respect to the main channel axis. Each SnO₆ octahedron connects to six SiO₄ tetrahedra on the three six-membered rings of SiO₄ tetrahedra. In this way, three three-membered rings are formed while each SiO₄ tetrahedron connects to both two isolated SnO₆ octahedra and two SiO₆ tetrahedra of the same six-membered ring. In this way, *ca.* 4 Å diameter channels are formed along the [100] direction with eight-membered rings containing –O–Si–O–Sn–O– linkages. The wall of the channel is covered by sevenmembered rings (three SnO₆ octahedra and four SiO₄ tetrahedra) which are composed of –Si–O–Si–O– and –Sn–O–Si–O– and by the three-membered rings. There are two

Fig. 2 Observed, calculated and difference powder X-ray diffraction pattern of AV-7.

1354 J. Mater. Chem., 2000, 10, 1353–1356

Table 2 Atomic coordinates and isotropic thermal parameters for AV-7

Name	X	у	Ζ	$B_{\rm iso}/{\rm \AA}^2$
Sn	0.1153(2)	0.72193(8)	0.21997(8)	0.68(2)
Κ	-0.3199(6)	0.8801(2)	0.3919(3)	2.25(8)
Si(1)	-0.1567(7)	0.4756(4	0.1577(3)	0.41(8)
Si(2)	0.2019(6)	0.7369(3)	-0.0192(3)	0.38(8)
Si(3)	-0.4154(7)	0.6974(3)	0.1587(3)	0.56(9)
Na–K ^a	0.7819(7)	0.5441(4)	0.5851(3)	2.3(1)
O(1)	0.052(2	0.5456(6)	0.1951(6)	2.4(2)
O(2)	0.061(1)	0.7610(6)	0.0604(6)	0.6(2)
O(3)	-0.204(1)	0.7642(6)	0.2087(7)	1.5(2)
O(4)	0.197(1)	0.9027(6)	0.2460(7)	2.2(2)
O(5)	0.147(1)	0.6865(7)	0.3775(7)	1.2(2)
O(6)	0.435(1)	0.6976(7)	0.2375(7)	1.2(2)
O(7)	0.157(2)	0.8996(7)	0.4443(7)	2.6(3)
O(8)	0.369(2)	1.0638(7)	0.3734(6)	1.5(2)
O(9)	0.452(1)	0.7458(6)	0.0419(7)	1.0(2)
O(w)	0.606(2)	0.5131(7)	0.3940(7)	3.7(3)
^a A mixed metal sit	e composed of 0.5 Na and 0.5 K.			

Table 3 List of bond distances (Å) for AV-7

Bond	Distance	Bond	Distance	Bond	Distance
Sn=O(1) Sn=O(2)	2.084(8) 2.050(8)	NaK $-O(1)$	2.953(9) 2.953(9)	Si(2)-O(2) Si(2)-O(5)	1.566(9) 1.56(1)
Sn=O(2) Sn=O(3)	2.093(9)	NaK-O(3)	2.718(9)	Si(2) - O(3) Si(2) - O(7)	1.649(9)
Sn–O(4)	2.158(8)	NaK–O(4)	3.00(1)	Si(2)–O(9)	1.610(9)
Sn=O(5)	2.036(9) 2.040(9)	NaK = O(5)	2.723(9) 3.182(9)	$S_{i}(3) \cap (3)$	1.55(1)
511-0(0)	2.040(9)	NaK = O(y) NaK = O(w)	2.46(1)	Si(3) = O(3) Si(3) = O(6)	1.55(1) 1.57(1)
K–O(1)	2.99(1)	NaK–O(w)	2.67(1)	Si(3)–O(9)	1.630(9)
K–O(3)	2.979(9)			Si(3)–O(8)	1.645(9)
K–O(6)	3.049(9)	Si(1) - O(1)	1.54(1)		
K–O(7)	2.99(1)	Si(1) - O(4)	1.58(1)		
K–O(8)	2.89(1)	Si(1)–O(7)	1.58(1)		
K-O(9)	3.088(9)	Si(1)–O(8)	1.67(1)		

Table 4 List of bond angles for AV-7

Bond	Angle (°)	Bond	Angle (°)	Bond	Angle (°)
$\begin{array}{c} Bond \\ \hline \\ O_5-Sn-O_2 \\ O_5-Sn-O_2 \\ O_5-Sn-O_1 \\ O_5-Sn-O_3 \\ O_5-Sn-O_4 \\ O_6-Sn-O_2 \\ O_6-Sn-O_1 \\ O_6-Sn-O_3 \\ O_6-Sn-O_4 \\ O_2-Sn-O_1 \\ O_2-Sn-O_4 \\ O_2-Sn-O_4 \\ O_1-Sn-O_4 \\ O_1-Sn-O_4 \\ O_3-Sn-O_4 \end{array}$	Angle (°) 91.3(6) 176.0(8) 85.6(5) 87.6(6) 94.6(6) 92.7(6) 92.0(6) 174.0(8) 85.2(5) 94.9(5) 88.4(6) 85.2(5) 93.8(6) 177.2(6) 89.0(6)	$\begin{array}{c} Bond \\ \hline O_1-Si_1-O_4 \\ O_1-Si_1-O_7 \\ O_1-Si_1-O_8 \\ O_4-Si_1-O_7 \\ O_4-Si_1-O_8 \\ O_7-Si_2-O_9 \\ O_5-Si_2-O_9 \\ O_5-Si_2-O_7 \\ O_2-Si_2-O_7 \\ O_2-Si_2-O_7 \\ O_9-Si_2-O_7 \\ O_9-Si_2-O_7 \end{array}$	Angle (°) 110.0(9) 111.4(9) 110.0(1) 113.4(9) 102.8(8) 108.2(9) 114.9(9) 111.0(9) 108.2(9) 110.3(8) 105.6(8) 106.3(8)	$\begin{array}{c} \text{Bond} \\ \\ O_3-\text{Si}_3-O_6\\ O_3-\text{Si}_3-O_9\\ O_3-\text{Si}_3-O_8\\ O_6-\text{Si}_3-O_9\\ O_6-\text{Si}_3-O_8\\ O_9-\text{Si}_3-O_8\\ O_9-\text{Si}_3-O_8\\ \hline \text{Si}_1-O_1-\text{Sn}\\ \text{Si}_2-O_2-\text{Sn}\\ \text{Si}_3-O_3-\text{Sn}\\ \text{Si}_3-O_3-\text{Sn}\\ \text{Si}_2-O_5-\text{Sn}\\ \text{Si}_3-O_6-\text{Sn}\\ \text{Si}_3-O_7-\text{Si}_2\\ \end{array}$	Angle (*) 110.4(9) 114.1(9) 111.9(8) 109.6(9) 100.0(8) 133.1(5) 130.2(5) 131.1(5) 123.7(5) 133.1(5) 134.6(5) 136.8(6)
				$\begin{array}{c} Si_3 \!\!-\!\! O_8 \!\!-\!\! Si_1 \\ Si_2 \!\!-\!\! O_9 \!\!-\!\! Si_3 \end{array}$	134.6(6) 130.8(6)

cation sites in the structure of AV-7. One is occupied only by K⁺ and is located near the centre of the seven-membered ring of the wall. In this site $K^{\,+}$ is coordinated by four framework oxygens from the seven-membered ring and two oxygens from adjacent six-membered rings of SiO₄ tetrahedra. The other cation site has an occupation of 50% $K^+,\ 50\%\ Na^+;$ it is located in the large channel near the wall and is coordinated by six framework oxygens of the wall and two water molecules. Orthorhombic AV-68 and monoclinic AV-7 are two polymorphs of $(Na,K)_2SnSi_3O_9$ ·H₂O, just as synthetic zirconeous umbite (AM-2)⁴ and kostylevite⁹ are polymorphs of $K_2ZrSi_3O_9 \cdot H_2O.$ $^{23}Na, \,^{29}Si$ and ^{119}Sn solid-state NMR data support the

Fig. 3 Polyhedral representation of the AV-7 structure viewed along [100]. Open and solid circles depict water molecules and (Na,K) cations, respectively.

Fig. 4 ²⁹Si and ¹¹⁹Sn MAS NMR spectra of AV-7.

J. Mater. Chem., 2000, 10, 1353-1356 1355

Fig. 5 Experimental and simulated ²³Na MAS NMR spectrum of AV-7.

structure proposed for AV-7. The ²⁹Si MAS NMR spectrum (Fig. 4) displays three overlapping peaks at δ ca. -84.5, -84.8 and -85.2 with similar intensities. In accord with this observation, the crystal structure of AV-7 calls for the presence of three unique Si (2Si, 2Sn) sites with equal populations. AV-6 also gives three resonances at δ -84.6, -85.5 and -86.7.⁸ Other reported framework stannosilicates give resonances in the range δ -78 to -92.^{5,6} The ¹¹⁹Sn MAS MNR spectrum of AV-7 (Fig. 4) displays

one peak at δ ca. -688, with a full-width at half-maximum of ca. 1200 Hz, ascribed to the single Sn(6Si) environment present. AV-6 also gives a single peak at δ ca. -709.⁸ The framework stannosilicates reported by Corcoran and Vaughan which contain octahedral Sn^{IV} give ¹¹⁹Sn MAS MNR signals at δ ca. -706 and -708.3.5

The AV-7 ²³Na MAS NMR spectrum (Fig. 5) displays a typical second-order quadrupole powder pattern corresponding to the single cation site occupied by sodium. The simulation of this pattern yields the following parameters: quadrupole coupling constant 1.12 MHz, asymmetry parameter 1.0 and isotropic chemical shift δ -11.4.

In conclusion, we report the successful synthesis and

structural characterisation of AV-7, a novel framework stannosilicate analogue of mineral kostylevite and titanosilicate UND-1. In view of the interesting ion-exchange properties displayed by a previously reported microporous stannosilicate,⁷ it is worthwhile to explore the possible applications of AV-7 in ion exchange. This work is now in progress in our laboratory.

Acknowledgements

This work was supported by PRAXIS XXI and FEDER.

References

- M. W. Anderson, O. Terasaki, T. Ohsuna, A. Philippou, 1 S. P. Mackay, A. Ferreira, J. Rocha and S. Lidin, Nature, 1994, 367, 347.
- J. Rocha, P. Brandão, Z. Lin, A. P. Esculcas, A. Ferreira and M. W. Anderson, J. Phys. Chem., 1996, 100, 14978.
- Z. Lin, J. Rocha, P. Brandão, A. Ferreira, A. P. Esculcas, 3 J. D. Pedrosa de Jesus, A. Philippou and M. W. Anderson, J. Phys. Chem. B, 1997, 101, 7114.
- Z. Lin, J. Rocha, P. Ferreira, A. Thursfield, J. R. Agger and 4 M. W. Anderson, J. Phys. Chem. B, 1999, **103**, 957. E. W. Corcoran, Jr. and D. E. W. Vaughan, Solid State Ionics,
- 5 1989, 32, 423.
- A. Dyer and J. J. Jáfar, J. Chem. Soc., Dalton Trans., 1990, 3239.
- A. Dyer and J. J. Jáfar, J. Chem. Soc., Dalton Trans., 1991, 2639.
- Z. Lin, J. Rocha and A. Valente, Chem. Commun., 1999, 2489. 8 9
- G. D. Ylyukhin, A. P. Ylyukhin, N. G. Shumyatskaya, A. A. Voronkov, N. N. Nevsky and N. V. Belov, Dokl. Akad. Nauk SSSR, 1982, 256, 860.
- X. Liu, M. Shang and J. K. Thomas, Microporous Mater., 1997, 10 10, 273.
- 11 J. Rodriguez-Carvajal, FULLPROF: Program for Rietveld Refinement and Pattern Matching Analysis, Abstracts of the Satellite Meeting on Powder Diffraction of the XVth Congress of the International Union of Crystallography, Toulouse, France, 1990, p. 127.
- 12 A. Boultif and D. Louër, J. Appl. Crystallogr., 1991, 21, 987.