Synthesis and structure of a novel microporous framework stannosilicate

Z. Lin,^a J. Rocha,^{*a} J. D. Pedrosa de Jesus^a and A. Ferreira^b

^aDepartment of Chemistry, University of Aveiro, 3810 Aveiro, Portugal b ESTGA, University of Aveiro, 3810 Aveiro, Portugal

Received 6th January 2000, Accepted 6th April 2000 Published on the Web 11th May 2000

The second example of a microporous framework stannosilicate with a known structure (AV-7) has been reported. The structure of AV-7, which is very similar to the structure of both the zirconosilicate mineral kostylevite and the previously reported microporous titanosilicate UND-1, has been studied by the Rietveld method and further characterised by bulk chemical analysis, powder X-ray diffraction, scanning electron microscopy, ²³Na, ²⁹Si and ¹¹⁹Sn magic-angle spinning NMR spectroscopy and thermogravimetry.

Introduction

Recently, the synthesis of inorganic microporous framework solids possessing structures which consist of interconnected octahedral- and tetrahedral-oxide polyhedra has stimulated considerable interest. We have been particularly concerned with the chemistry of microporous titanium and zirconium silicates containing tetracoordinated Si^{4+} and Ti^{4+} or Zr^{4+} . usually in octahedral coordination. $1+4$ We have now extended our work to stannosilicates.

Several minerals containing $SnO₆$ and $SiO₄$ polyhedra are known and a few (dense) stannosilicate phases have been crystallised from hydrothermal conditions (ref. 5 and references therein). Despite this, very little work is presently available on the synthesis of microporous stannosilicates. Two microporous and a layered stannosilicate have been reported by Corcoran et al ⁵ Subsequently, Dyer and Jáfar reported the synthesis of a third microporous stannosilicate.⁶ The structure of all these materials is, however, unknown. The ion-exchange properties of the Dyer and Jáfar stannosilicate have been studied for the replacement of $Na⁺$ by a range of monovalent and divalent ions.⁷ Thermodynamic parameters have been calculated from isotherm data leading to the conclusion that the exchanges were of zeolite-type character and that the stannosilicate behaves as a microporous solid.

Very recently, we reported the synthesis and structural characterisation of the microporous stannosilicate AV-6 which possesses the structure of mineral umbite.⁸ Here, we report the synthesis of a novel stannosilicate (named AV-7, Aveiro microporous solid no.7) which possesses the structure of both the zirconosilicate mineral kostylevite⁹ and the previously reported titanosilicate known as UND-1.¹⁰

Experimental

AV-7 synthesis

An alkaline solution was made by dissolving sodium metasilicate (12.27 g) $(Na_2SiO_3.5H_2O, BDH)$ and KF (2.45 g) (Aldrich) in H₂O (12.14 g). SnCl₄ \cdot 5H₂O (3.76 g) (98 m/m^o/₀, Riedel-deHaën) was added to the alkaline solution with thorough stirring. This gel, with a molar composition 5.5 $Na₂O$: 2.0 K₂O : 5.5 SiO₂ : 1.0 SnO₂ : 97 H₂O, was transferred to a Teflon-lined autoclave and treated at $230\,^{\circ}\text{C}$ for 5 days under autogenous pressure without agitation. The crystalline product was filtered off, washed at room temperature with distilled water, and dried at 70 °C overnight, the final product

being an off-white microcrystalline powder. Within experimental error, bulk chemical analysis by ICP suggests for AV-7 the chemical formula $Na_{0.5}K_{1.5}SnSi₃O₉·H₂O$.

Materials characterisation

Powder X-ray diffraction (XRD) data were collected on a Philipps X'pert MPD diffractometer using $Cu-K\alpha$ radiation. Rietveld refinement was performed using the program FULL-PROF.¹¹ Table 1 gives the crystallographic data for AV-7. Scanning electron microscope (SEM) images were recorded on a Hitachi S-4100 microscope. 23Na, 29Si and 119Sn NMR spectra were recorded at 105.85, 79.49 and 149.09 MHz, respectively, on a (9.4 T) Bruker MSL 400 P spectrometer. ²⁹Si MAS NMR spectra were recorded with 40° pulses, a spinning rate of 5.0 kHz and 60 s recycle delays. Chemical shifts are quoted in ppm from TMS. ²³Na MAS NMR spectra were measured using short and powerful radiofrequency pulses (0.6 μ s, equivalent to a 15 \degree pulse angle), a spinning rate of 32 kHz and a recycle delay of 2 s. Chemical shifts are quoted in ppm from 1 M aqueous NaCl. ¹¹⁹Sn MAS NMR spectra were recorded with a 40° pulse, a spinning rate of 14 kHz and a recycle delay of 100 s. Chemical shifts are quoted in ppm from Sn(CH3)4. Thermogravimetric (TGA) curves were measured with a TGA-50 analyser. The samples were heated under air at a rate of 5° C min⁻¹ .

Results and discussion

SEM (Fig. 1) shows that AV-7 consists of crystals of *ca*. $1.5 \times 1.5 \times 4.5$ µm. The total AV-7 mass loss (ascertained by

Fig. 1 SEM image of AV-7.

DOI: 10.1039/b000102n J. Mater. Chem., 2000, 10, 1353–1356 1353

This journal is \odot The Royal Society of Chemistry 2000

TGA) between 30 and 450 °C is ca. 4%. This water loss is reversible. Powder XRD shows that the framework of AV-7 is stable up to 450 \degree C.

The powder XRD pattern of AV-7 could be indexed with DICVOL¹² using a monoclinic unit cell with $a=6.4596$, $b=11.5523, c=12.9379 \text{ Å}, \beta=104.990^{\circ}.$ Atomic coordinates (space group $P2_1/c$) were derived from those reported for $UND-1¹⁰$ The final profile fit is shown in Fig. 2, the atomic coordinates are given in Table 2, and bond distances and bond angles are collected on Tables 3 and 4, respectively.

The structure of AV-7 (Fig. 3) is very similar to the structures of the mineral kostylevite and titanosilicate UND-1¹⁰ and consists of six-membered rings formed by $SiO₄$ tetrahedra and isolated $SnO₆$ octahedra. In order to coordinate the latter, the six-membered rings are tilted with respect to the main channel axis. Each $SnO₆$ octahedron connects to six $SiO₄$ tetrahedra on the three six-membered rings of $SiO₄$ tetrahedra. In this way, three three-membered rings are formed while each $SiO₄$ tetrahedron connects to both two isolated $SnO₆$ octahedra and two $SiO₆$ tetrahedra of the same six-membered ring. In this way, ca. 4 Å diameter channels are formed along the [100] direction with eight-membered rings containing $-O-Si-O-Sn-$ O- linkages. The wall of the channel is covered by sevenmembered rings (three $SnO₆$ octahedra and four $SiO₄$ tetrahedra) which are composed of $-Si-O-Si-O-$ and $-Sn-$ O±Si±O± and by the three-membered rings. There are two

Fig. 2 Observed, calculated and difference powder X-ray diffraction pattern of AV-7.

1354 J. Mater. Chem., 2000, 10, 1353-1356

Table 2 Atomic coordinates and isotropic thermal parameters for AV-7

Name	\boldsymbol{x}	$\mathcal V$	\boldsymbol{Z}	$B_{\rm iso}/\text{\AA}^2$
Sn	0.1153(2)	0.72193(8)	0.21997(8)	0.68(2)
K	$-0.3199(6)$	0.8801(2)	0.3919(3)	2.25(8)
Si(1)	$-0.1567(7)$	0.4756(4)	0.1577(3)	0.41(8)
Si(2)	0.2019(6)	0.7369(3)	$-0.0192(3)$	0.38(8)
Si(3)	$-0.4154(7)$	0.6974(3)	0.1587(3)	0.56(9)
$Na-K^a$	0.7819(7)	0.5441(4)	0.5851(3)	2.3(1)
O(1)	0.052(2)	0.5456(6)	0.1951(6)	2.4(2)
O(2)	0.061(1)	0.7610(6)	0.0604(6)	0.6(2)
O(3)	$-0.204(1)$	0.7642(6)	0.2087(7)	1.5(2)
O(4)	0.197(1)	0.9027(6)	0.2460(7)	2.2(2)
O(5)	0.147(1)	0.6865(7)	0.3775(7)	1.2(2)
O(6)	0.435(1)	0.6976(7)	0.2375(7)	1.2(2)
O(7)	0.157(2)	0.8996(7)	0.4443(7)	2.6(3)
O(8)	0.369(2)	1.0638(7)	0.3734(6)	1.5(2)
O(9)	0.452(1)	0.7458(6)	0.0419(7)	1.0(2)
O(w)	0.606(2)	0.5131(7)	0.3940(7)	3.7(3)
	$\rm{^{\alpha}A}$ mixed metal site composed of 0.5 Na and 0.5 K.			

Table 3 List of bond distances (A) for AV-7

Bond	Distance	Bond	Distance	Bond	Distance
$Sn-O(1)$	2.084(8)	$NaK-O(1)$	2.953(9)	$Si(2) - O(2)$	1.566(9)
$Sn-O(2)$	2.050(8)	$NaK-O(2)$	2.953(9)	$Si(2) - O(5)$	1.56(1)
$Sn-O(3)$	2.093(9)	$NaK-O(3)$	2.718(9)	$Si(2) - O(7)$	1.649(9)
$Sn-O(4)$	2.158(8)	$NaK-O(4)$	3.00(1)	$Si(2) - O(9)$	1.610(9)
$Sn-O(5)$	2.036(9)	$NaK-O(5)$	2.723(9)		
$Sn-O(6)$	2.040(9)	$NaK-O(9)$	3.182(9)	$Si(3) - O(3)$	1.55(1)
		$NaK-O(w)$	2.46(1)	$Si(3) - O(6)$	1.57(1)
$K=O(1)$	2.99(1)	$NaK-O(w)$	2.67(1)	$Si(3) - O(9)$	1.630(9)
$K=O(3)$	2.979(9)			$Si(3) - O(8)$	1.645(9)
$K=O(6)$	3.049(9)	$Si(1) - O(1)$	1.54(1)		
$K=O(7)$	2.99(1)	$Si(1) - O(4)$	1.58(1)		
$K=O(8)$	2.89(1)	$Si(1) - O(7)$	1.58(1)		
$K=O(9)$	3.088(9)	$Si(1) - O(8)$	1.67(1)		

Table 4 List of bond angles for AV-7

cation sites in the structure of AV-7. One is occupied only by K^+ and is located near the centre of the seven-membered ring of the wall. In this site K^+ is coordinated by four framework oxygens from the seven-membered ring and two oxygens from adjacent six-membered rings of SiO4 tetrahedra. The other cation site has an occupation of 50% K⁺, 50% Na⁺; it is located in the large channel near the wall and is coordinated by six framework oxygens of the wall and two water molecules. Orthorhombic $AV-6^8$ and monoclinic AV-7 are two polymorphs of $(Na,K)_2$ SnSi₃O₉·H₂O, just as synthetic zirconeous umbite $(AM-2)^4$ and kostylevite⁹ are polymorphs of and kostylevite⁹ are polymorphs of $K_2ZrSi₃O₉·H₂O$.
 $K_2ZrSi₃O₉·H₂O$.
 ^{23}Na , ^{29}Si and ^{119}Sn solid-state NMR data support the

Fig. 3 Polyhedral representation of the AV-7 structure viewed along [100]. Open and solid circles depict water molecules and (Na,K) cations, respectively.

Fig. 4 29 Si and 119 Sn MAS NMR spectra of AV-7.

J. Mater. Chem., 2000, 10, 1353-1356 1355

Fig. 5 Experimental and simulated ²³Na MAS NMR spectrum of AV-7.

structure proposed for AV-7. The ²⁹Si MAS NMR spectrum (Fig. 4) displays three overlapping peaks at δ ca. -84.5, -84.8 and -85.2 with similar intensities. In accord with this observation, the crystal structure of AV-7 calls for the presence of three unique Si (2Si, 2Sn) sites with equal populations. AV-6 also gives three resonances at δ -84.6, -85.5 and -86.7.8 Other reported framework stannosilicates give resonances in the range δ -78 to -92.^{5,6}

The 119 Sn MAS MNR spectrum of AV-7 (Fig. 4) displays one peak at δ ca. -688, with a full-width at half-maximum of ca. 1200 Hz, ascribed to the single Sn(6Si) environment present. AV-6 also gives a single peak at δ ca. -709 .⁸ The framework stannosilicates reported by Corcoran and Vaughan which contain octahedral Sn^{IV} give ¹¹⁹Sn MAS MNR signals at δ ca. -706 and $-708.3.^5$

The AV-7 23 Na MAS NMR spectrum (Fig. 5) displays a typical second-order quadrupole powder pattern corresponding to the single cation site occupied by sodium. The simulation of this pattern yields the following parameters: quadrupole coupling constant 1.12 MHz, asymmetry parameter 1.0 and isotropic chemical shift δ -11.4.

In conclusion, we report the successful synthesis and

structural characterisation of AV-7, a novel framework stannosilicate analogue of mineral kostylevite and titanosilicate UND-1. In view of the interesting ion-exchange properties displayed by a previously reported microporous stannosilicate, 7 it is worthwhile to explore the possible applications of AV-7 in ion exchange. This work is now in progress in our laboratory.

Acknowledgements

This work was supported by PRAXIS XXI and FEDER.

References

- 1 M. W. Anderson, O. Terasaki, T. Ohsuna, A. Philippou, S. P. Mackay, A. Ferreira, J. Rocha and S. Lidin, Nature, 1994, 367, 347.
- J. Rocha, P. Brandão, Z. Lin, A. P. Esculcas, A. Ferreira and M. W. Anderson, J. Phys. Chem., 1996, 100, 14978.
- 3 Z. Lin, J. Rocha, P. Brandão, A. Ferreira, A. P. Esculcas, J. D. Pedrosa de Jesus, A. Philippou and M. W. Anderson, J. Phys. Chem. B, 1997, 101, 7114.
- 4 Z. Lin, J. Rocha, P. Ferreira, A. Thursfield, J. R. Agger and M. W. Anderson, J. Phys. Chem. B, 1999, 103, 957.
- 5 E. W. Corcoran, Jr. and D. E. W. Vaughan, Solid State Ionics, 1989, 32, 423.
- A. Dyer and J. J. Jáfar, J. Chem. Soc., Dalton Trans., 1990, 3239.
- A. Dyer and J. J. Jáfar, J. Chem. Soc., Dalton Trans., 1991, 2639.
- 8 Z. Lin, J. Rocha and A. Valente, *Chem. Commun.*, 1999, 2489.
9 G. D. Ylyukhin, A. P. Ylyukhin, N. G. Shumyatskaya
- 9 G. D. Ylyukhin, A. P. Ylyukhin, N. G. Shumyatskaya, A. A. Voronkov, N. N. Nevsky and N. V. Belov, Dokl. Akad. Nauk SSSR, 1982, 256, 860.
- 10 X. Liu, M. Shang and J. K. Thomas, Microporous Mater., 1997, 10, 273.
- 11 J. Rodriguez-Carvajal, FULLPROF: Program for Rietveld Refinement and Pattern Matching Analysis, Abstracts of the Satellite Meeting on Powder Diffraction of the XV^{th} Congress of the International Union of Crystallography, Toulouse, France, 1990, p. 127.
- 12 A. Boultif and D. Louër, *J. Appl. Crystallogr.*, 1991, 21, 987.